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Training a perceptron in a discrete weight space

Michal Rosen-Zvi and Ido Kanter
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Learning in a perceptron having a discrete weight space, where each weight can take 2L11 different values,
is examined analytically and numerically. The learning algorithm is based on the training of the continuous
perceptron and prediction following the clipped weights. The learning is described by a new set of order
parameters, composed of the overlaps between the teacher and the continuous/clipped students. Different
scenarios are examined, among them on-line learning with discrete and continuous transfer functions. The
generalization error of the clipped weights decays asymptotically as exp(2Ka2) in the case of on-line learning
with binary activation functions and exp(2eulua) in the case of on-line learning with continuous one, wherea
is the number of examples divided byN, the size of the input vector andK is a positive constant. For finiteN
andL, perfect agreement between the discrete student and the teacher is obtained fora}LAln(NL). A cross-
over to the generalization error}1/a, characterizing continuous weights with binary output, is obtained for
synaptic depthL.O(AN).

DOI: 10.1103/PhysRevE.64.046109 PACS number~s!: 84.35.1i, 02.50.Cw, 05.20.2y
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I. INTRODUCTION

The study of neural networks as a tool for understand
learning processes has benefited various applications@1,2#.
We are interested in the perceptron learning ability as
archetype of feed networks that are able to learn. Most of
perceptrons that have been studied until now are under
totally different constraints, two extremes. Either the teac
weight vector is restricted to a binary space~the Ising
teacher!, or it is continuous, confined to a hypersphere. O
a few aspects of the learning ability of weights, which a
confined to have a finite number of values, have been s
ied. These systems are the intermediate case, in which
weights are confined to finite space (2L11)N whenL is an
integer andN stands for the input size@3–5#.

The generalization ability of such networks, in which t
synapse has a finite depth, has been analyzed by using
lica calculations and has been found to have interesting n
trivial behavior of phase transition. The learning proced
composed of two phases: one in which the learning abilit
very limited, the generalization error is finite. Another pha
is when the generalization error is exactly zero, perfect lea
ing is gained, and it occurs in a finitea, where a is the
number of patterns divided by the size of the inputN @5#.
Nevertheless, replica calculations do not involve practi
algorithms that one may use in order to obtain that learn
behavior. In the Ising case, for instance, although a ph
transition was predicted, no practical algorithm reprodu
this discontinuous behavior@6,7#.

In contrast to batch learning, when all the examples
used together to achieve perfect learning, on-line learnin
a procedure in which an update rule is used and learnin
each step utilizes only the last of a sequence of examp
Such an algorithm drastically reduces the computational
fort compared with batch learning and no explicit storage
a training set is required@8#. It was shown that there is n
updating rule that uses only the discrete vector for upda
and results in perfect learning@9#.

In this paper we address the issue of learning from a fi
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depth teacher. The method we introduce is based on the
ping of a continuous perceptron. Having an artificial contin
ous weight vector enables smooth learning; clipping it res
in a discrete studentWW S, whose components are close
those of the teacher. This method has been used succes
in the Ising perceptron@6,7,10,11#. The questions that aris
from the procedure above are; whether learning is possib
all and if it is possible, does it give better results than t
learning in a continuous space. It seems very natural tha
the weights’ depth is very large, i.e., there are many poss
values to each weight, the learning behavior of the discr
weights will be exactly the same as those of a continu
weight. However, in the following we examine if and wh
are the scaling relations between both propertiesL andN.

Our main results are as follows.~a! Learning in the case
of finite depth is possible by using a continuous precurs
This result was confirmed both analytically and numerica
~b! On-line learning scenario: In the case of a binary out
the generalization error decays superexponentially w
a, eg}exp(2K1a

2). whereas in the case of continuou
output the generalization error decays much fas
exp@2K2 exp(K3a)#, where all the constantsKi are positive
constants.~c! Perfect learning is obtained whenN is very
large but finite, unlike the continuous perceptrons perf
mance. Quantitatively, for a givenN andL perfect learning is
achieved fora f}O„LAln(LN)…. ~d! A crossover to the be-
havior of the generalization error in the presence of conti
ous weights occurs forL.o(AN).

The paper is organized as follows. In Sec. II the archit
tures and the dynamical rules are defined as well as the
tinuous and discrete students. In Sec. III the order parame
are defined and the relations between the overlaps of
continuous teacher with the discrete/continuous students
derived analytically. In Sec. IV, the dynamical evolution
the order parameters in the case of binary output is deri
analytically and confirmed by simulations. In Sec. V the ca
of large synaptic depth and the crossover to the continu
weights is studied. In Sec. VI, the perfect learning in finiteN
systems is examined both analytically and numerically. S
©2001 The American Physical Society09-1
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tion VII is devoted to analyzing results in the case of co
tinuous output. Finally, in Sec. VIII results are conclud
and open questions are addressed.

II. THE MODEL

A. The architecture

We investigate a teacher-student scenario where both
are single-layer feed forward. The examples are generate
the so-called teacher, which is known to be restricted t
well-defined discrete set of values. We define a syna
depthL and a set of discrete values as follows@3,5#:

Wi
T56

1

L
,6

2

L
•••61. ~1!

When the zero value is part of the game, the possible va
of the weights are

Wi
T50,6

1

L
,6

2

L
•••61. ~2!

For the sake of simplicity in this paper we present resu
only for including zero case@Eq. ~2!#. It is easy to generalize
our results to any other set including the one presented in
~1!, which converges to the Ising case whenL51.

The components of the input patternsjW i
m are independen

random variables. In the following they are drawn from
Gaussian distribution with zero mean and unit variance. T
size of the teacher, the student, and the input isN. For any
input jW the so-called teacher generates an outputSaccording
to a rule

S5FS WW T
•jW

AN
D . ~3!

In the following we discuss both binary and continuo
rules. The student has in mind the ruleF and the discrete se
of values that the teacher is confined to. In addition, in
on-line learning scenario, the student is given in each t
stepm, the inputjWm, and the teacher’s outputSm, whereas in
batch learning the set (jWm,Sm) m51 . . .aN is given alto-
gether.

B. Dynamics of the weights

A continuous precursor for the studentJW is needed for
learning from a discrete teacher. The learning proced
having a continuous student, is well known. In an on-li
scenario, at each step the continuous student update
weight vector according to some learning algorithmf. The
generic form of the learning algorithm is

JWm115JWm1
h

AN
f ~Sm,xJ

m!jWmSm, ~4!

whereh is the learning rate andxJ is the student’s local field
xJ[1/ANJW•jW . Such a learning algorithm means that at ea
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learning stepm, the current weight vectorJWm is updated ac-
cording to the new examplejWm and each example is pre
sented only once.

In an off-line scenario, there is a set of examplesjWm m
51 . . .aN and they are used altogether to gain perf
learning. There are methods in which the off-line learning
made according to a rule that defines an additive quantity
all the examples. Such procedures were shown to end u
perfect learning@12,13#. Since having a discrete teacher
merely a special case, not using the knowledge that
teacher is confined to a discrete set of values gives the w
known results; an exponential decay in the case of cont
ous rule~on-line learning@14,15#! and a power law decay in
the case of binary rule~on-line and off-line learning
@12,13,16–18#!.

The way to gain from the knowledge of the discrete n
ture of the weights is at the center of our work, and is ba
on having in addition a discrete studentWW S derived from the
continuous one using the following clipping procedure.
continuous weight is clipped to the nearest discrete va
among the 2L11 possibilities. Such a clipping procedure
the optimal one with the lack of any prior knowledge abo
the weights except that each value appears with the s
probability. We define limit valuesl l , which are arranged in
an increasing order. The limit values divide the continuo
region of the precursor weight vector components intoL
11 intervals, according to the number of the available v
ues as in Eq.~2!. The clipping process is such thatJi is
mapped ontol /L for JiP(l l , l l11). The set of limits in-
cludes$l2 l ,l2 l 21 , . . .l21 ,l0 ,l1 . . . l l 11%. It is given by
the following mathematical rule:

Wi
S5 (

l 52L

L
l

L
@u~l l 112Ji !2u~l l2Ji !#, ~5!

whereu is the Heaviside function.
Since the value of those limitsl l is somewhat unclear, we

would like to exemplify it with some specific cases. In th
case ofL51, Eq. ~1!, for instance, due to symmetry it i
obvious that the limit between21 and 1 should be 0. Hence
one introduces the following limits:l2152`, l0
50, l15`. Evaluating the mapping equation results
the well-known clipping rule,Wi

S5sgn(Ji), @6,10#. Finding
the appropriate value for all other cases but the Ising perc
tron becomes more complicated, the continuous space i
longer divided into two clear regions and hence one has
consider carefully the value of the limits.

In this paper we chose to nail down the general results
focusing on the including zero case,L51, i.e., Wi50,61.
This case is known as the diluted Ising case and some o
aspects of it have been studied in Refs.@19,3,20#. It contains
the simplicity of the Ising case on the one hand and int
duces more generality concerning discrete values on
other hand. In this case, there is only one unknown par
eterl1 sincel252l215` andl052l1.

While choosing the value of the limits,~in the last case it
means choosing only the value ofl1) one should take into
consideration thea priori knowledge about the weights o
9-2
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TRAINING A PERCEPTRON IN A DISCRETE WEIGHT SPACE PHYSICAL REVIEW E64 046109
teacher. It is clear that the limits should scale with the s
dent norm, since the exact set of values that the continu
student ends up with is irrelevant. The mapping rule ensu
that the discrete student ends up with the same value
those of the teacher. This will be shown only after analyz
the new order parameters and their dependence on the fo
one, as presented in the following section.

III. THE ORDER PARAMETERS

Evaluating the agreement between teacher and stude
done by calculating either the generalization error or the
der parameters. The generalization erroreg is calculated by
taking the average of the student/teacher disagreement
the distribution of input vectors. The generalization error
given, in principle, by the overlaps between the vectors,~the
so-called order parameters!. However, in order to go into
details one has to first define the rule,@F in Eq. ~3!#. This
will be done in the following sections. In the following w
concentrate on introducing the complete set of order par
eters and their inter-relations.

In our case there are three vectors and hence two inte
pendent sets of order parameters. One set concerns the
tinuous overlaps,

RJ[
1

N
JW•WW T,

QJ[
1

N
JW•JW , ~6!

and the other set concerns the discrete vector’s overlaps

RW[
1

N
WW S

•WW T,

QW[
1

N
WW S

•WW S. ~7!

We note that the dynamical evolution of the continuous
of order parameters, Eq.~6!, is independent of the clippe
order parameters, since thetraining is done only following
the continuous weights. Contrary to the training process,
predictionof the generalization properties is made followin
the clipped student. Hence, finding the quantitative interp
between the continuous set of order parameters, Eq.~6!, and
the discrete set of order parameters, Eq.~7!, is the corner-
stone for the analytical description of the generalization a
ity of the student.

In this section we examine the relationship between
clipped set and the continuous one. The development oRJ
and QJ is not influenced by the clipping method. Henc
examination of the above relationship enables us to de
mine the development of the clipped order parameters
results in a description that provides the whole picture of
learning process.
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The teacher’s norm is determined according to thea pri-
ori probabilities for each discrete value. Having equal pro
ability and taking the thermodynamic limit results in th
norm

T[
1

N
WW T

•WW T5
1

L2nL
(
l 51

L

l 25
1

3
1

1

3L
, ~8!

where nL is defined as the number of optional valuesnL
52L11. The order parameters in the clipped machinesRW
andQW as a function of those of the continuous machineRJ
andQJ are evaluated as follows:

RW5K 1

N (
i

Wi
T l

L
@u~l l 112Ji !2u~l l2Ji !#L ,

QW5K 1

N (
i

l 2

L2
@u~l l 112Ji !2u~l l2Ji !#L , ~9!

where^A& is an average over the known constraints and
known overlaps

^A&[
TrWTE dJid~Ji

22NQJ!d~JiWi
T2NRJ!A

TrWTE dJid~Ji
22NQJ!d~JiWi

T2NRJ!

, ~10!

and the summations are over all the possible values ol ,
starting from l 52L, 2L11, . . . ,L, and over i
51 . . .N. The validity of this average is based on the a
sumption that all vectorsJW that are consistent with the con
straints are taken with equal probability. This assumption
violated when the updating of the continuous vector itsel
made according to the clipped one,~see@6,11#!.

The results are

RW5
1

2L2nL
(

l
l 8@erf~F l 11,l 8!2erf~F l ,l 8!#,

QW5
1

2L2nL
( l 2@erf~F l 11,l 8!2erf~F l ,l 8!#, ~11!

where the summation is over all the possible values ofl ,l 8,
and we define

F l ,l 8[

l l

AQJ

2
rJ

AT

l 8

L

A2~12rJ
2!

, ~12!

where rJ[RJ /ATAQJ, rW[RW /ATAQW are the geo-
metrical order parameters.

In the limit L→` the summation in Eq.~11! can be re-
placed by an integral. Calculating the integrals in this lim
results in the obvious identitiesRW5RJ andQW5QJ . Note
that taking integrals instead of summation imposes an
equality. The differenceF l ,l 82F l 11,l 8 tends to zero as long
9-3
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asL@1/A12rJ
2, @see Eq.~12!#. Hence, in the event thatL is

very large, learning with the continuous student or learn
with the clipped version produces the same result as lon
rJ is smaller than 2/L. This limit is discussed in Sec. VI.

We exemplify the general results in the case of the dilu
Ising perceptron. In this case we use the following limits

l252l215`,

l152l0 , ~13!

and the teacher’s norm isT52/3. The mapping above give

RW5
1

3
@erf~A1!1erf~A2!#,

QW512
1

3
erf~A0!1

1

3
erf~A2!2

1

3
erf~A1!, ~14!

where A65(rJ /AT6l1 /AQJ)/A2(12rJ
2) and A0

5l1 /A2QJ(12rJ
2).

From Eq.~14! one can verify that at the limita→` when
the continuous order parameters achieve perfect learn
rJ→1, the discrete order parameters achieve perfect lear
as well,RW→2/3, QW→2/3, andrW→1 given that the posi-
tive quantityl1 is smaller thanl1,AQJ /T.

In general, in order that the discrete student will ga
perfect learning it is necessary that the relationAQJ /T( l
21),l l,AQJ /Tl holds for any positivel . Note that the
interpretation of the above constraint is that in the vicinity
perfect learning the precursor might be focused around
set of discrete symmetric values, but not necessarily the o
that the clipped student has.

One of the conclusions concerningl l is that the law ac-
cording to whicheg decays is independent of the exact val
of the limit valuel l . It depends only on the ruler~binary/
continuous!, the specific strategy of learning~on-line/off-
line!, and the learning algorithm one uses. In the followi
we analyze all these variations.

IV. BINARY OUTPUT

In an on-line learning scenario one can write equations
motion that determine the development of the order par
eters as a function ofa. The rate of convergence depends
the rule,F @Eq. ~3!# and the learning algorithm that one us
f @Eq. ~4!#. Fine tuning is achieved by choosing the learni
rateh.

We analyze learning procedure in the case of binary r

S5sgn~x!, ~15!

wherex is the local field and the generalization error as
function of r is known to be

eg5
1

p
cos21~r!. ~16!
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Although it was shown that using the ‘‘expected stab
ity’’ algorithm that maximizes the generalization gain p
example leads to an upper bound for the generalization a
ity @17#, we concentrate on the so-called AdaTron or rela
ation learning algorithm. The reason is that this latter alg
rithm in a specific case~for zero stability,k50) performs
comparably well. Moreover, unlike the ‘‘expected stability
algorithm it does not require additional computations in t
student network besides the updating of its weights, and
analysis is simpler@8#.

The convergence to perfect learning depends on the le
ing rate. If it is too large, perfect generalization becom
impossible. The transition from a learnable situation to u
learnable occurs athc . In the following, in order to simplify
the analysis, we choose a fixed learning rateh51, which is
below hc in all scenarios.

We update the artificial continuous weight vectorJW . The
updating is made as in Eq.~4! according to the following
learning rule:

Ji
m115Ji

m2
h

AN
S JWm

•jWm

AN
D j i

muS 2
JWm

•jWm

AN
SmD . ~17!

The equations for the order parameters withh51 are

drJ

da
52

rJ

2p
cos21~rJ!1

1

p S 12
rJ

2

2 DA12rJ
2,

dQJ

da
5

QJ

p
@rJA12rJ

22cos21~rJ!#. ~18!

In the limit a→`, one can expand the right-hand side of t
first equation aroundrJ51. The next step is to plug the
result of rJ(a) up to the first order corrections ina in the
second equation. One can find the following power law:

rJ;122S 3p

4 D 2 1

a2
,

QJ;Q0S 12p2S 3

4D 3 1

a2D . ~19!

Note that in the case of a binary output unit, perfect learn
is achieved as soon as the angle between the vectors go
zero, independent of the student’s norm.

The solution of Eq.~18! describes only the developmen
of the continuous perceptron’s overlaps. The next step i
map the continuous precursor to the clipped one as defi
by Eq. ~11!. Since in the case of binary ruler the studen
norm converges to some unknown value, it seems only n
ral to choose a limit setl l that scales withAQJ. As a result
rW , @RW /AQWT, see Eq.~11!# is only a function ofrJ
and does not depend onQJ . Hence, substituting the
asymptotic behavior ofrJ @Eq. ~19!# into rW , one can find
the typical asymptotic behavior ofrW . In general, the
clipped order parameterrW is composed of a devision be
tween two different sums of error functions. The argumen
9-4
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TRAINING A PERCEPTRON IN A DISCRETE WEIGHT SPACE PHYSICAL REVIEW E64 046109
each error function consists of 1/(12rJ
2). Asymptotically 1

2rJ→1/a and the first correction to the error function sca
superexponential witha, exp@2K(l,L)a2# whereK(l,L)
is independent ofa. The leading correction ofrW is deter-
mined byK2min(l,L) over all error functions. Finally, the
generalization error in the limita→` is given by eg

}A(12rW)/2/p @see Eq.~16!#, and hence

eg}
exp@2K~l,L !a2#

a
1

2

, ~20!

whereK(l,L) is determined by the minimal value upon a
ul l2 l /LAQJ /Tu, @for a specific example see Eq.~24!#.

One way of choosingl l is simply ‘‘half the way’’ be-
tween the constrained values, i.e.,l2L5lL115` and oth-
erwise

l l5
1

L S l 2
1

2DAQJ

T
. ~21!

In the case where the limits are defined as in Eq.~21! it is
possible to calculate the asymptotic decrease of the gene
zation error forany given depthL,

K~l,L !5
1

12p2~L21L !
. ~22!

We exemplify the aforementioned discussion in the
luted Ising perceptron. We use the limits as in Eq.~13! and
assumel15cAQJ /T. In that case

rW5
erf~a1!1erf~a2!

ATA923 erf~a0!23 erf~a1!13 erf~a2!
, ~23!

wherea65rJ6c/A2T(12rJ
2) and a05c/A2T(12rJ

2). In
the limit of largea one finds

eg}
exp~2bca

2!

a1/2
, ~24!

where for c>1/2bc5c2/6p2 and otherwise bc5(1
2c)2/6p2. One can see that choosingc51/2 results in the
fastest decay of the generalization error.

The analytical results are compared with simulations
the case of a teacher of the type of the diluted Ising perc
tron with the following parameters;l50.5AQJ /T and l
50.3AQJ /T, see Fig. 1. The initial conditions for the con
tinuous student weight vector areQJ(a50)5T52/3 and
RJ(a50)50. The weight components were drawn out o
Gaussian distribution. We usedh51, N53000 and each
point was averaged over 50 samples. One can see in F
that the analytical results given by Eq.~24! are in agreemen
with simulations.

One can see that the superexponential decay is inde
dent of the accurate value ofl. However, two important
parameters do depend on the exact choice ofl. One is the
decay rate, the factorK(l) in the largea limit. One can see,
04610
li-

-

n
p-

. 1

n-

for instance, that the optimal limit,l50.5, results in a faste
decay than the limitl50.3. The second is the exacta or the
exact value ofrJ at which the clipped version gives a bett
result than the continuous one. We named this value asrT .
For rJ,rT the clipping lowers the overlaprJ since the
learning solution does not contain enough information ab
the real direction of the teacherWW T so that clipping only
leads the solution to ‘‘forget’’ a little about the learned pa
tern without bringing it closer to the exact solution. In th
other region, whenrJ.rT , clipping becomes efficient be
cause the learning solution is near the exact one. The num
cal results ofrT according to the mapping,@Eq. ~23!#, are
rT;0.92 for l150.5AQJ /T and rT;0.97 for l1

50.3AQJ /T, see Fig. 1.

V. LARGE SYNAPTIC DEPTH

In this section we examine the crossover of the gener
zation error in the presence of continuous weights as
increase the synaptic depth. As long as the synaptic de
L,O(AN), the generalization error still vanishes superexp
nentially, Eq.~20!, where the prefactor decreases withL. For
L>O(AN) the learning is characterized by the features
spherical constrained learning.

The first step towards the continuous case limit is to fi
out the change of the decay of the generalization error a
function of L. We focus on the binary unit in the on-lin
scenario. The analytic tractability of this model enables
profound study of the influence of the synaptic depth o
the learning features.

In the last model the generalization decays superexpon
tially, eg;exp(2Ka2), Eq.~20!. The factorK depends on the
limits one choosesl l . Hence, in order to maintain consis
tency, we use the abovementioned limits, Eq.~21!, andK is
given by Eq.~22!. We should emphasize that only one dom
nated term out of many superexponential terms arising fr

FIG. 1. Simulation results of ln(eg) of the continuous precurso
(s) and of the clipped vector vsa2. The clipping is made accord
ing to the mapping in Eq.~13!, where the results are forl1

50.5AQJ /T (¹) andl150.3AQJ /T (n). Error bars are smaller
than symbols. Solid lines are the numerical integrals@Eq. ~18!#. rT

refers to the point at which a transition occurs between a supe
performance by the continuous/clipped perceptron~see text!.
9-5
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MICHAL ROSEN-ZVI AND IDO KANTER PHYSICAL REVIEW E 64 046109
the asymptotic expansion of all the error functions@Eq. ~14!#,
was kept in Eq.~20!. As soon as the deviations betwee
different factors in the exponent are too small, one has
integrate all the terms together instead of neglecting all
one. Such a procedure results in a crossover from a supe
ponential decay to power law behavior.

Analytical and simulation results of the generalization
ror in varieties of synaptic depths are presented in Fig
Simulations were carried out withN5630 and each point is
averaged over 100 samples. The inset shows the estim
slopeK as a function of the depthL. The solid line is the
analytical results, Eq.~22!, and the circles are the slope
estimated by simulations forL51,2,3,4. The deviation from
the analytical curve is probably due to higher order corr
tions in a. Note that only at the very end of the learnin
procedure, the linearity of ln(eg) in a2 can be achieved. In
addition, at this stage of learning (a@1), one has to bear in
mind deviations due to finite size corrections inN.

We now present an argument supporting the statem
that the generalization performance of finite depth machi
coincides with the performance of continuous machines
soon asL;AN. This scaling is found by taking into accoun
that: ~a! the difference between two available values is
order of 1/L; ~b! the distribution of the continuous stude
values around the teacher’s value is a Gaussian with a v

ance ofA12rJ
25eg

J , whereeg
J is the generalization error o

the continuous student. Having a learning procedure~in the
continuous space! in a finite dimension results in a genera
zation erroreg

J , which is different from the analytical predic
tions. The variance is of orderA1/N @21#. Hence, an estima
tion to the order of the lower value thateg

J gets in a specific
run will be A1/N. As a consequence, having a discrete m
chine of depthL when

1

L
!A12rJ

2;eg
J;A1

N
~25!

FIG. 2. Simulation results ofA2 ln(eg) in the case ofL51
~diluted Ising! (3), L52 (¹), L53 (n), and L5157 (s) vs
a. The analytical result obtained by the numerical integration of
~18! and Eq.~23! is presented for the diluted Ising case~solid line!.
The dashed line is the analytical curve forA2 ln(eg

J), whereeg
J is

the generalization error of thecontinuousstudent. Inset: the depen
dence of the prefactorK(L) vs 1/(L21L). Simulation results
~circles! and analytical results~solid line! are following Eq.~22!.
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or L@AN, gives the same results as those of continuo
learning. Note that Eq.~25! is consistent with the mathemat
cal constraint that was pointed out in Sec. III when we d
cussed the continuous limit@after Eq. ~11!#. Indeed, the
simulations show indeed that in the case ofL5157@AN,
whereN5630, the discrete vector’s performance coincid
with the analytical learning curve of thecontinuousstudent.

It is worth pointing out that a similar result was foun
when analyzing the possibility of learning from a discre
teacher by a discrete student using a general updating
@9#. The last analysis uses a totally different argument,
sulting in the conclusion that only when the teacher’s de
is of orderAN, it is possible to learn the rule using an u
dating rule that depends on the discrete weights, i.e., o
then it behaves as if we have a continuous machine.

VI. FINITE SYSTEMS—PERFECT LEARNING

The theoretical results presented in the previous sect
exhibit the typical behavior of the generalization error a
the order parameters. The main result is the fast decay o
generalization error of the clipped perceptron to zero,
~20!. In the case of teacher and student with continuo
weights and finiteN, the generalization error is always finit
distance from zero, even in the asymptotic stage of the le
ing process. In contrast to the continuous case, the lear
of a perceptron with discrete weights and finiteN is charac-
terized by a transition to perfect learning, as was found
the Ising perceptron@11#. Performing simulations in that cas
results in a perfect learning at some stage, since in the c
ping version the student knows exactly the teacher’s optio
values. Hence, the overlap becomes exactly one,rW51, and
the generalization error becomes exactly zero as well,eg
50.

In order to estimate the number of steps needed for p
fect learninga f we use the analytical approximation valid
the a→` regime. At that regime we have an analytical a
proximation of the interdependence ofeg and a @Eq. ~20!
and Eq.~31!#. In addition, the minimal step before perfe
learning is well defined:rW5122/(LN) or eg;A1/(LN).
Hence, we can find the interplay betweena andN.

It was shown that except for some special cases suc
trapping in symmetric phases in MLN,@22,23# the analytical
equations for the development of the order parameters
accurate in the leading order. Finite dimensionN affects the
deterministic equations for the mean values of the order
rameters by having broader distributions for the order para
eters, and the covariances scale as 1/N. Moreover, extensive
numerical simulations show that the finite size corrections
rJ scale with 1/N @24,25,21# and hence they are negligible

In the binary output perceptron the generalization er
drops superexponentially, Eq.~20!. Hence, perfect learning
is determined by

exp@2K~l,L !a2#;A1/~LN!. ~26!

If one uses the set of limits as in Eq.~21! then the depen-
dence ofK on L is given by Eq.~22!. Deriving a f from the
last equation results in,a f;LAln LN. This result indicates

.
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quantitatively that for any chosen limitl l , the number of
learning steps necessary to achieve perfect learning is fi
as long asN andL are finite.

Figure 3 presents results ofa f obtained in simulations for
the diluted Ising perceptron withc50.4, c50.5, and c
50.6, @Eqs. ~23! and ~24!#. Results where averaged ov
M (N) training sets, were values ofM (N) ranging from 5000
to 20 in accordance toN that is varied between 30 and 900
To get results in a lower dimensionN, we averaged over a
larger number of simulationsM.

One can see from the obtained values ofa f(N,c) in Fig.

3 that the last quantity is indeed linear inAln N. Note that the
obtained slope in Fig. 3 forc50.4 andc50.6 is the same as
we expect, sincebc is symmetric aroundc51/2. Indeed, one
can see in the inset thata f(L) in the case ofN5630, in-
creases linearly withLAln L. As L→` an infinite number of
examples are needed for perfect learning, there is a cross
to the spherical case as discussed in the previous chapt

Small deviations from a straight line in Fig. 3 are e
pected to be a consequence of the following approximatio

~a! We took as an analytical curve@Eq. ~26!# only the
asymptotic function that is an expansion valid in infinitea.

~b! We neglected the polynomial corrections in Eq.~26!
such as 1/Aa.

~c! We derived Eq.~26! from the analytical calculation o
rJ(a). The latter quantity itself is influenced by finite siz
effects as explained above.

As was shown in previous sections,c50.5 gives the bes
performance in the asymptotic learning procedure, lowera f
for all N, and is confirmed in our simulations, Fig. 3. In th
thermodynamic limitN→`, a f→` as expected.

VII. CONTINUOUS UNIT

We now study the case of continuous output perceptr
with finite depth. As long as one uses a continuous activa

FIG. 3. Simulation results ofa f , the number of rescaled step
necessary to achieve perfect learning vsAln N. Simulations for the
diluted Ising perceptron, in the case of a binary output unit, w
l150.4AQJ /T (¹), l150.5AQJ /T (n), and l150.6AQJ /T
(s). Solid lines correspond to the linear fit of least squares er
Inset: Simulation results ofa f vs AL ln L for N5630, L
52,3,4,7 and the limit values are chosen according to Eq.~21!. The
solid line is the least squares fit.
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function, the generalization error decreases exponentia
~see for instance@14,15,18#!. In order to learn a rule that is
defined by a finite depth vector, we used a spherical ve
for the student weight vectorJW and clipped it in order to have
a discrete student weight vectorWW S. The updating of the
spherical student weight vector is done according to the g
dient descent method,

JWm115JWm2
h

AN
¹JW e~JWm,jWm!. ~27!

The errore(JWm,jWm) measures the deviation of the stude
from the teacher’s output for a particular inputjW . The gen-
eralization error of a student is defined as the averaged e

eg5 K 1

2
@S~JW ,jW !2S~WW T,jW !#2L

jW
. ~28!

Since the learning features of all kinds of continuo
transfer functions are more or less the same, we chos
concentrate on the ‘‘sin’’ activation function

S5sin~kx!. ~29!

The periodic activation function sin was found to be lea
able given that the periodk is small enough@15#. In the
following we will simplify our analysis by takingk51 and
the learning rateh51. Since the learning curves of the co
tinuous version are the same as if there was a rule define
a continuous teacher~having the finite depth limitation is
merely a special case of the spherical constraint! and the
learning rate we chose is small enough, we find that per
learning is an attractive fixed point in both scenarios.

Linearizing the equations of motion around these fix
points results in the following form~which holds for all con-
tinuous transfer functions!:

RJ512
c1

detV
V22exp~g1a!1

c2

detV
V12exp~g2a!,

QJ511
c1

detV
V21exp~g1a!2

c2

detV
V11exp~g2a!.

~30!

The matrix V(1,1) arises from the linearization
d/da (R,Q)Á5V(1,1)(12R,12Q)Á whereg1 ,g2 are its
eigenvalues and both are negative. The constantsc1 ,c2 are
determined from the numerical solution of the equations
motion.

In order to get a description of the discrete learning o
has to use the mapping relations as in Eq.~5!. The generali-
zation error of the finite depth student depends directly up
the order parameters as can be found by taking the ave
over the local field distributions Eq.~28!. The general result
of this calculation at thea→` regime is

eg;exp~2C0euKua!, ~31!

r.
9-7
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where K and C0 depend only on the learning rateh, the
limits one choosesl l and the specific activation function.

The explicit expression ofC0 andK for the sin activation
function andh51 is give below. The equations of motio
are

dRJ

da
5

1

2
@~RJ11!D122RJe

22QJ2~RJ21!D2#,

dQJ

da
5@~RJ1QJ!D122QJe

22QJ2~QJ2RJ!D2#

1
1

8
@2~e22QJ2e222E21D1!132D2

4 22D2

1~2E12e28QJ2D1
4 !#, ~32!

with D65exp@2(11QJ62RJ)/2# and E65exp@2(1
19QJ66RJ)/2#. As a→`, one gets two eigenvalues,g1
;20.30 andg2;20.69. Using Eq.~14!, rescalingRW and
QW by the teacher’s norm 2/3, and taking the limit valuesl,
to be as defined in Eq.~21!. Collecting everything we have
the leading order correction in the limita→`,

RW;12
exp~20.15a!

2ApK1

exp~2K1
2e0.30a!,

QW;11
exp~20.15a!

ApK1

exp~2K1
2e0.30a!, ~33!

where

K1
25

c2

L21L
, ~34!

andc is a rescaled constant determined by the initial con
tions only. The generalization error as a function of the d
crete parameters is

eg5
1

2 F12d21d12
1

2
~e22QW1e22!G , ~35!

with d65exp@2(11QW62RW)/2#. Expanding the last
equation aroundRW→1 andQW→1, we obtain that the gen
eralization error decays very fast,

eg;exp~2K1
2e0.30a!. ~36!

We performed simulations in the diluted Ising caseL
51 and in the case ofL52. Results are averaged over 1
samples andN53000. In Fig. 4 the development of the di
crete as well as the continuous order parameters as a fun
of a in the case ofL51 are presented. The solid lines are t
analytical numerical integrals of Eq.~32!. Note that the tran-
sition in this scenario is from a poor generalization of t
clipped version compared to that of the continuous one,
situation in which the clipped version has a better perf
mance and it occurs in the samerT;0.92 as in the binary
unit. This quantity is related to the clipping rule and is ind
pendent of the specific transfer function one tries to lear
04610
i-
-

ion

a
-
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The inset of Fig. 4 shows the decay of the generalizat
error for L51 ~circles! and L52 ~triangles!. We plotted
ln(2ln eg) as a function ofa and according to the abov
analysis, Eqs.~34! and ~36!, the slope of the linear curve
should be independent ofL and equal to 0.30, whereas th
constant in the linear formula depends onL. We obtained in
simulations for L51, 0.3360.01, and for L52, 0.38
60.01. Considering the fact that we are dealing with an
proximation that is valid only in thea→` and simulations
obtained are at finitea, the results are comparable with an
lytical predictions. The generalization error of the clipp
version for largera (a.7 in our case! gives better results
than those predicted by the analysis. Its values are exa
zero due to the finite size effects discussed in Sec. V.

Following the same arguments used in order to find
estimation of the number of examples needed for gain
perfect learning, one finds that in the case of continuo
outputa f; ln(ln N). It is obvious from the analytical calcu
lations and the above simulations that clipping a continu
vector in order to learn a finite depth teacher results in
tremely fast learning. The learning in finite dimension
characterized bya f , above which one gets perfect learnin
of the discrete vector. All of these unique characteristics
discrete learning disappear as soon as the weight depth
the order ofAN, as found in Sec. VI.

VIII. CONCLUSIONS

In this paper, we presented an analysis of the simp
neural network, the perceptron, that learns from examp
given by another perceptron, the teacher, which is confi
to a discrete space. In fact, we used two students; a con
ous precursor and its clipped version.

We analyzed the new set of order parameters arising f
the clipping method. We discussed the issue of how to c
and what set of limitsl l is the best choice. We found that

FIG. 4. Simulation results ofrJ(n) and rW (s) vs a in the
diluted Ising case. Solid lines are the numerical integrals@Eqs.~14!
and ~32!#. Inset: ln@2ln(eg)# vs a obtained in simulations forL
51 ~circles! andL52 ~triangles! with N53000. Solid lines are the
least squares fit. The slope was found to be 0.33 in the caseL
51 and 0.38 in the case ofL52.
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depends specifically on the kind of optimization one i
poses. We showed that during the very first step after rea
ing some overlaprT , a transition occurs and the clippe
version results in a better performance then the nonclip
one, i.e., the benefit from the clipping is evident only af
the learning is nearly accomplished, after gaining largerJ .
For optimizing the learning time, by means of minimizin
the generalization error for a given finitea, the best value is
given by minimization ofrW with respect tol. In the diluted
Ising perceptron, for instance, the optimal value for be
performance aroundrJ;0.9 was found to be l1

;0.425AQJ /T. These results suggest that it is possible
optimize the generalization error of the clipped percept
by the choice of a dynamicall15l1(a). In this paper we
introduce the limits that result in the fastest decrease in
limit a→`. To conclude, choosing the limits that give th
fastest decrease is given in Eq.~21! as explained in Secs. IV
and VII.

As one can see from the definitions in Eq.~2!, it is natural
to choose the continuous weight vector as the one that is
constrained to a hypersphere, than to choose a vector
strained to a hypercube space. It was shown that in the
of storing random patterns, pretraining a continuous stud
whose weight vectors are constrained to the volume o
hypercube results in a better performance@7#. Open ques-
tions remain: what is the quantitative benefit that one
gain in a learning procedure by using the cubical constrai
and can a learning strategy be designed that fulfills this c
straint?

We studied the case of a very largeL and show a scaling
relation betweenL and N arising from the analysis. ForL
;O(AN) the learning curve is the one typical of the co
tinuous case. However, it should remain clear that learnin
the same as having a continuous student unlessa→` and
y

. E
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rJ→1. In that regime the fast decay that characterizes
clipped learning appears.

All discrete computers actually correspond to a simi
situation, where all available properties have a finite rep
sentation. The machine uses some kind of clipping by rou
ing the numbers. In fact, the process carried out by comp
ers updates the clipped version by adding a continu
quantity to each weight component that depends on the m
match between thediscretestudent and the teacher. The ne
step is rounding the student’s weights. In such a scenari
precursor isnot used. In analysis of the latter, one has
make use of different method than the one presented
and it is beyond the scope of our analysis. An intermedi
case where there is a precursor but its updating is done
cording to the clipped version has been analyzed in R
@26,27#. However, even if computers use larger memo
space for the calculations during the learning~a kind of
‘‘continuous’’ precursor! and give final results by limited
parameters~rounded ones! and hence the learning procedu
is a kind of finite space, there should be difference betw
the expected results in the continuous machines and the
tual results in the finite machines. The difference betwe
the learning in the continuous student and the learning in
clipped one, as predicted here, can be significant only in
a→` regime or small depth. Visualizing them is usual
impossible since they are smaller than the measurem
scale.
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